yl8cc永利-官方网站

快速导航
首页 物理百十 院内门户 English |
  • 关于我们
    • 经理寄语
    • yl8cc永利官网简介
    • 历史沿革
    • 公司机构
    • 下属单位
    • 双年报
  • 教职员工
    • 教研人员
    • 工程技术人员
    • 院士
    • 人才计划
    • 博士后
    • 行政人员
    • 离退休人员
    • 招聘信息
  • 新闻公告
    • yl8cc永利官网
    • 通知公告
  • 学术活动
    • 日历
    • 百年物理讲坛
    • 物院论坛
    • 格致论坛
    • 物理之美
    • 博士后科学沙龙
    • 学术报告
    • 学术会议
  • 公司产品
    • 旗下产业
    • 研究生教育
    • 招生信息
  • 科学研究
    • 研究方向
    • 重大项目
    • 科研机构
    • 科研成果
  • 物理员工
    • 员工信息
    • 重大活动
    • 员工活动
    • 员工捐赠
    • 联系我们
  • 办公服务
    • 教师事务
    • 员工事务
    • 科研管理
    • 交流访问
    • 员工基金
    • 综合服务
    • 文件下载
科学研究
研究方向+
理论物理研究所+
QCD和强子物理 电弱理论与新物理 核结构与中高能核物理 凝聚态理论 超弦理论与宇宙学 等离子体物理
凝聚态物理与材料物理研究所+
宽禁带半导体 超导与低温实验研究 低维纳米材料 纳米半导体与半导体光子学 磁学与新型磁性材料 软凝聚态物理 扫描探针显微学 凝聚态理论
现代光学研究所+
纳米光子学与表面等离激元物理 超快光谱与介观光学 飞秒强场光物理与相干操控 介观结构与量子调控 微纳光子学与生物传感 有机介观光电子器件及物理 功能材料与器件集成 光学理论与量子信息
重离子物理研究所+
自由电子激光及射频超导加速器 RFQ加速器与中子照相 加速器质谱 离子束物理及应用 中子与裂变物理 静电加速器实验室 等离子体理论研究
技术物理系+
实验核物理 晕核与核天体理论 核结构与核衰变理论 高能实验物理 核物理应用于核技术
天文学系+
宇宙学与星系形成 高能天体物理 星际介质物理、恒星与行星系统 粒子天体物理
大气与海洋科学系+
大气动力学 气候变化 中小尺度数值模拟 大气边界层物理和大气环境 云物理与大气化学 物理海洋与气候变化 大气辐射与遥感
量子材料科学中心+
凝聚态实验 凝聚态理论 凝聚态计算
重大项目
科研机构
科研成果
科研成果
当前位置: 首页 >> 科学研究 >> 科研成果 >> 正文
赵宏政课题组提出自适应步长算法提高量子动力学模拟效率
发布日期:2024-07-03 浏览次数:
  供稿:凝聚态物理与材料物理研究所  |   编辑:陈伟华   |   审核:杨学林

yl8cc永利官网凝聚态物理与材料物理研究所赵宏政助理教授与合作者在数字化量子动力学模拟领域取得重要进展。研究团队将自适应步长的演化算法拓展至随时间变化的多体哈密顿量动力学模拟。2024年7月3日,相关成果以“利用分段守恒定律的含时哈密顿量动力学的自适应Trotter算法”(Adaptive Trotterization for time-dependent Hamiltonian quantum dynamics using piecewise conservation law)为题,在线发表于《物理评论快报》(Physical Review Letters) 上。

量子多体系统的非平衡动力学演化是十分丰富且极为复杂的,对于它们的研究,解析求解或者利用经典计算机直接进行数值模拟的方法通常非常有局限性,很难给出令人满意的描述。近年来,量子模拟平台在空间和时间上的操控水平突飞猛进,这使得我们利用它们来模拟复杂的量子多体动力学成为可能。

图1:(a)演化示意图,ADA-Trotter能够将量子态的演化严格限定在正确的能量壳层上,固定步长的算法则不然ADA-Trotter算法。(b)利用反馈调节自适应改变演化步长。

数字化量子模拟(Digital quantum simulation)是其中一种可能的方法,其基本思想是将连续时间演化算符离散为基本的少体量子门,即所谓的Trotterization过程。然而,由于这些量子门的非对易性,Trotterization会引入计算误差,在较长的模拟时间内会逐渐积累。尽管使用较小的演化步长可以提高模拟精度,但也会相应增加电路深度。在当前含噪声的量子模拟平台上,量子门的缺陷是不可避免的,这对提高量子模拟的准确性构成了重大挑战。因此,探索能够保持模拟精度的同时又能最小化电路深度的算法对于量子模拟来说意义重大。

在之前的工作中,研究团队受到了自适应步长的经典算法的启发(例如Runge–Kutta方法),提出了一种自适应步长的量子算法,ADA-Trotter【PRX Quantum 4, 030319(2023)】。此算法使用测量的手段来监控不含时间的哈密顿量系统的能量及其涨落的误差(图1a),利用中心极限定理的原理,通过一个反馈的过程来自适应地调节时间演化步长(图1b)。这种反馈过程不仅使得量子动力学模拟的计算资源被更加高效利用,还可以将量子态限定在正确的能量壳层中,避免能量误差的累积。

然而,将这种算法扩展到时间依赖的哈密顿量是一个十分具有挑战性的问题。因为系统本身不再能量守恒,很难定义改变演化步长的判断标准。本文中,研究团队提出新的tADA-Trotter的算法来针对性地解决这个问题。此算法的核心是首先将哈密顿量在时间上的变化离散化,并通过微扰论的手段来解析推导出系统中存在的分段守恒定律(图2a)。随后,利用此守恒定律的均值和方差作为标准,自适应调整演化步长,显著提升量子模拟的精确度(图2b)。

图2:(a)tADA-Trotter的示意图。将哈密顿量的时间变化离散化,利用分段守恒定律调整Trotter演化步长。(b)自适应算法与固定步长算法的对比。

赵宏政为论文第一作者及通讯作者,其他合作者包括德国马克斯-普朗克复杂系统物理研究所的Marin Bukov研究员、Roderich Moessner教授,以及德国奥格斯堡大学的Markus Heyl教授。研究工作得到了国家自然科学基金以及永利集团基本科研业务费支持。

论文原文链接:https://link.aps.org/doi/10.1103/PhysRevLett.133.010603

上一篇:胡永云团队揭示古生代大洋环流演变及其对理解现代气候的意义

下一篇:张华伟课题组在银河系翘曲研究中取得重要进展

  • 院庆廿年
  • 学术会议
  • 招聘信息
  • 招生信息

联系我们:

地址:北京市海淀区成府路209号

邮编: 100871

电话: 010-62751732


北大物理人

Copyright © yl8cc永利-官方网站 版权所有